• Already Registered?
Skip Navigation
PIML Image
    • Summary
    • Invited Speakers
    • Travel Grants
    • Schedule
    • Hotel and Transportation
    • Staff
    • FAQs
    • Attendees
    • Abstracts
  • Facebook
  • Twitter
    Tweet
  • LinkedIn

Physics Informed Machine Learning

Videos from the 2016 conference can be viewed here.

Summary

A revolution in statistics and machine learning (ML) is underway. Modern algorithms can now learn high level abstractions via hierarchical models, leading to breakthrough accuracies in benchmarks for computer vision, language, etc. Underlying these advances is a strong and deep connection to various aspects of statistical physics. For example, classical coarse graining concepts such as the renormalization group directly map to deep learning. Another connections physics inspired algorithms for accelerated graphical model inference; originally designed for simulations of lattice models of magnetism and quantum field theory, these algorithms have proven transformative in the training of complex, hierarchical ML models.

This workshop seeks perspectives on leveraging the deep connection between ML and physics, but now with the goal to better understand and model physical systems, static and dynamic. We invite experts both in machine learning techniques as well as domain science applications such as building reduced models for infrastructures (energy systems, traffic flows, etc), emulating turbulent ids that arise in climate simulation, and reconstructing (from measurements and models) transport phenomena in complex materials. The workshop discussions are aimed towards approaches and methods for physical modeling applications where a big-data, black-box approach to ML is only a starting point. We seek participants who may suggest innovative approaches that extend application agnostic ML techniques by incorporating complex constraints imposed by physical principles (e.g. conservation laws, causality, entropy principles and related).

The workshop format will include lecture sessions, discussion sessions on applications, and posters. 

We plan for active participation of LANL researchers and program managers across directorates and divisions interested in the physics informed learning. This emerging area of research has many aspects of computational co-design,and draws on LANL's strengths in statistical physics, theoretical and applied computer science, infrastructure modeling and simulations, fluids and materials modeling, and high performance computing. Looking forward, we view physics informed learning as a viable path for LANL and DOE toward truly predictive multi-scale modeling, which is a foundational challenge for mechanical, materials,biological, and chemical engineering.

Topics:

  • Energy
  • Climate
  • Materials
  • Images

Posters

Participants are encouraged to submit a poster, which will be displayed throughout workshop. We will also schedule a one hour slot for poster discussions, tentatively scheduled for Wednesday, the second day of the workshop. We plan to select ~ 5 posters for short contributed presentations, tentatively scheduled for Thursday or Friday.

If you are receiving a travel grant, then you are required to submit your poster abstract by November 9.

Decisions about financial support and contributed presentations will be made by December 1.


Important Dates

Financial Support Requests:   November 9, 2015
Abstract Submissions:
    November 9, 2015
Hotel Reservation Deadline:   December 9, 2015

Organizing Committee

Kipton Barros (T-1), Misha Chertkov (T-4), Deepjyoti Deka ‎(T-4/CNLS), Andrey Lokhov (T-4/CNLS), Sidhant Misra (T-4/CNLS), Marc Vuffray (T-4/CNLS)

  • When

    Tuesday, January 19, 2016 - Friday, January 22, 2016
    8:00 AM - 5:00 PM
    Mountain Time

    • Add to Calendar

  • Where

    Inn at Loretto
    211 Old Santa Fe Trail
    Santa Fe, New Mexico 87501
    USA
    505-988-5531

    • Get Weather

    • Get Driving Directions

  • Planner

    Kacy Hopwood

  • Websites

    Sponsors
    Center for Nonlinear Studies, Los Alamos National Laboratory

    Other links
    Los Alamos Visitor Information, Santa Fe Visitor Information

Outlook Outlook
iCal iCal
Google Google
Yahoo! Yahoo!
MSN MSN
Already Registered?

This event is brought to you by the Center for Nonlinear Studies at Los Alamos National Laboratory.
This event has been declared "Open to the Public - with Registration".

LANL and CNLS Logos

Top